Pre- and Post-Launch Spatial Quality of the Landsat 8 Thermal Infrared Sensor
نویسندگان
چکیده
The Thermal Infrared Sensor (TIRS) for the Landsat 8 platform was designed and built at NASA Goddard Space Flight Center (GSFC). TIRS data will extend the data record for thermal observations from the heritage Landsat sensors, dating back to the launch of Landsat 4 in 1982. The two-band (10.9 and 12.0 μm) pushbroom sensor with a 185 km-wide swath uses a staggered arrangement of quantum well infrared photodetector (QWIPs) arrays. The required spatial resolution is 100 m for TIRS, with the assessment of crop moisture and water resources being science drivers for that resolution. The evaluation of spatial resolution typically relies on a straight knife-edge technique to determine the spatial edge response of a detector system, and such an approach was implemented for TIRS. Flexibility in the ground calibration equipment used for TIRS thermal-vacuum chamber testing also made possible an alternate strategy that implemented a circular target moved in precise sub-pixel increments across the detectors to derive the edge response. On-orbit, coastline targets were developed to evaluate the spatial response performance. Multiple targets were identified that produced similar results to one another. Even though there may be a slight bias in the point spread function (PSF)/modulation transfer function (MTF) estimates towards poorer performance using this approach, it does have the ability to track relative changes for OPEN ACCESS Remote Sens. 2015, 7 1963 monitoring long-term instrument status. The results for both preand post-launch response analysis show general good agreement and consistency with edge slope along-track values of 0.53 and 0.58 preand post-launch and across-track values 0f 0.59 and 0.55 preand post-launch.
منابع مشابه
Geothermal area detection using Landsat 8 operational land imager and thermal infrared sensor data in Ardabil province, Iran
GIS and remote sensing technique with using Landsat 8 images data are very important methods for detection of geothermal resources. In this study, Land Surface Temperature (LST) for Ardabil province in northwest of Iran, was derived with the use of Landsat 8 Operational Land Imager (OLI) of 30 m spatial resolution and Thermal Infrared Sensor (TIRS) data of 100 m spatial resolution. We consider ...
متن کاملThe Thermal Infrared Sensor (TIRS) on Landsat 8: Design Overview and Pre-Launch Characterization
The Thermal Infrared Sensor (TIRS) on Landsat 8 is the latest thermal sensor in that series of missions. Unlike the previous single-channel sensors, TIRS uses two channels to cover the 10–12.5 micron band. It is also a pushbroom imager; a departure from the previous whiskbroom approach. Nevertheless, the instrument requirements are defined such that data continuity is maintained. This paper des...
متن کاملThe next Landsat satellite: The Landsat Data Continuity Mission
a r t i c l e i n f o Geological Survey (USGS) are developing the successor mission to Landsat 7 that is currently known as the Landsat Data Continuity Mission (LDCM). NASA is responsible for building and launching the LDCM satellite observatory. USGS is building the ground system and will assume responsibility for satellite operations and for collecting, archiving, and distributing data follow...
متن کاملLandsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration
Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS), a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 μm (Bands 10 and 11 respectively). They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI), also on-board L...
متن کاملRadiometric Calibration Methodology of the Landsat 8 Thermal Infrared Sensor
The science-focused mission of the Landsat 8 Thermal Infrared Sensor (TIRS) requires that it have an accurate radiometric calibration. A calibration methodology was developed to convert the raw output from the instrument into an accurate at-aperture radiance. The methodology is based on measurements obtained during component-level and instrument-level characterization testing. The radiometric a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015